

libranet-logging

	Installation

	Why use logging?

	Goal of libranet-logging

	Features

	Usage
	In your deployment

	In your code

	Unittesting
	Introduction

	Re-usable test-fixtures

	Run tests

	Run tests with code-coverage

	Changelog
	1.4 (unreleased)

	1.3 (2023-01-24)

	1.2 (2021-06-06)

	1.1 (2020-02-13)

	1.0 (2020-02-12)

	0.5 (2019-08-19)

	0.4 (2019-07-31)

	0.3 (2019-05-28)

	0.2 (2019-03-28)

	0.1 (2019-03-28)

	Security Policy
	Supported Versions

	Reporting a Vulnerability

	MIT License

Contribute

	Contributors

	How to contribute
	Development environment setup

	Issues and feature requests

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Enforcement Responsibilities

	Scope

	Enforcement

	Enforcement Guidelines

	Attribution

Modules

	libranet_logging
	Submodules

	Package Contents

Indices and tables

	Index

	Module Index

	Search Page

 [image: _images/testing.yaml]Testing [https://github.com/libranet/libranet-logging/actions/workflows/testing.yaml]
[image: _images/linting.yaml]Linting [https://github.com/libranet/libranet-logging/actions/workflows/linting.yaml]
[image: _images/ad9c932774731f794d4c8e407ddda7747f0b13f8.svg]Read the Docs [https://libranet-logging.readthedocs.io/en/latest/]
[image: _images/badge.svg]Codecov [https://codecov.io/gh/libranet/libranet-logging]
[image: _images/libranet-logging.svg]PyPi Package [https://pypi.org/project/libranet-logging/]
[image: _images/license-MIT-blue.svg]MIT License [https://github.com/libranet/libranet-logging/blob/main/docs/license]

Installation

Install via pip:

> bin/pip install libranet-logging

Or add to your poetry-based project:

> poetry add libranet-logging

Why use logging?

Logfiles are your best-friend

	during development, where debugmode is developmentmode

	more important: while running in PRD,

	it shows how the application is being used, by whom, and if it’s successfull

	allows to become pro-active. There is no need to wait for bugreports from users.

	most important: during urgent troubleshooting on PRD (AKA panic-mode)

	heisenbugs, difficult to reproduce.

Goal of libranet-logging

Make it as easy as possible to enable and properly use the full power of the python logging-framework

python logging-module contains:

	loggers, hierarchical

	handlers

	formatters

	filters

Think of logger=message-channel, handler=subscriber to a channel

Minimize the need to make changes in code

Move all config out of code and into a config-file “logging.yml”

	logging to a file should be as simple as:

```python
>>> import logging
>>> logging.getLogger('panicmode')
```


Features

	load logging-configuration from a yaml-config

	validate yaml-file for missing keys, invalid values

	configurable via env-variables

	sane defaults if env-var is not set

	when logging to console, have colorized logging,

	but nowhere else

	configurable colors (avoid blue on black)

	integrate python-warnings

	add sample email-logger

	add sample syslog-logger

	avoid empty files that will remain empty

	cleanup dedicated file-handlers based on root-loglevel

	future ideas:

	integrate with kibana

	log as json, structlog

	https://logmatic.io/blog/python-logging-with-json-steroids/

	https://medium.com/@sanchitsokhey/centralised-logging-for-django-gunicorn-and-celery-using-elk-stack-76b13c54414c

	https://logmatic.io/blog/beyond-application-monitoring-discover-logging-best-practices/

	in code throw out all

	formatting,

	handler-config,

	setting loglevel

	debug-flags like::

>>> if DEBUG:
>>> log.debug(....)

Usage

In your deployment

You can use following env-variables:

	PYTHON_LOG_CONFIG, path to logging.yml, e.g /opt/miniconda/envs/libranet/etc/logging.yml

	PYTHON_LOG_DIR, path to log-directory where logfiles will be created, /var/tmp/python

	PYTHON_ENABLE_LOGGING_TREE 1|0

	optional env-vars:
	
	LOGLEVEL_ROOT

	LOGLEVEL_libranet_logging

	LOG_HANDLERS=”console|debug_file|info_file|warning_file|error_file”

If missing, these default to DEBUG

In your code

To initialize the logging-infrastructure and set-up all configured
loggers, handlers, formatters and filters:

> import libranet_logging
> libranet_logging.initialize()
 2018/06/01 10:00:00 - root - DEBUG - Logging configured from <path-to>/logging.yml

You do this once in your application,
in the function that starts execution, not at the top of your module.

Calling getLogger without arguments returns the root-logger,
of which all other loggers descend.
Normally you do NOT need this logger.
> import logging
> root_log = logging.getLogger()

You normally use the module-logger
> log = logging.getLogger(__name__)

and starting using it
> log.debug('This is debugging-information.')
> log.info('This is useful information.')
> log.warning('This is a warning.')
> log.error('This is a warning.')

You can log a full-traceback by providing the exception to log.exception().
> try:
> import foo
> except ImportError as e:
> log.exception(e)

Unittesting

Introduction

Our python-package libranet_logging comes with a series of tests to check
the validity of our code. Some are unittests, others are full integration-tests.
The distinction between the several types of tests is of lesser importance.

However we try to minimize the amount of mocking and/or patching.
The test-framework we use is pytest.

	https://docs.pytest.org/en/latest/

	https://docs.pytest.org/en/latest/goodpractices.html#test-discovery

	https://pytest-cov.readthedocs.io/en/latest/

Pytest is an extensible framework, and has a whole series of addons and plugins available on PyPi [https://pypi.python.org/pypi?%3Aaction=search&term=pytest].

You just can pip-install these packages:

<env-dir>/bin/pip install pytest pytest-cov pytest-flask pytest-mccabe pytest-mock

Note

Since the tests are importing the code of libranet_logging, this package needs be installed in a virtualenv,
together with all its dependencies. See installation.

Re-usable test-fixtures

For our package, we have several application-specific test-fixtures in tests/conftest.py:

pylint: disable=missing-function-docstring
"""conftest.py - custom pytest-plugins.

For more information about conftest.py, please see:

 - https://docs.pytest.org/en/latest/writing_plugins.html
 - https://pytest-flask.readthedocs.io/en/latest/tutorial.html

"""
import os
import pathlib

import pytest

@pytest.fixture(scope="session")
def tests_dir():
 tests_dir_ = os.path.dirname(os.path.realpath(__file__))
 return pathlib.Path(tests_dir_)

@pytest.fixture(scope="session")
def pkg_dir():
pkg_dir_ = pkg_resources.resource_filename("libranet_logging", "")

return pl.Path(pkg_resources.files("libranet_logging") / "etc/logging.yml")
return pathlib.Path(pkg_dir_)

@pytest.fixture(scope="function")
def env(tmpdir):
 var_dir = tmpdir.mkdir("var")
 var_log_dir = var_dir.mkdir("log")
 # var_run_dir = var_dir.mkdir('run')
 # var_tmp_dir = var_dir.mkdir('tmp')

 # override any existing env-variable
 os.environ["PYTHON_LOG_DIR"] = str(var_log_dir)
 return tmpdir

Run tests

Run pytest via:

> cd <env-dir>
> bin/pytest src/libranet_logging/

> cd <env-dir>src/libranet_logging
> pytest

 (libranet) wouter@midgard: <env-dir>src/libranet_logging > make py

 platform linux -- Python 3.5.5, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
 rootdir: /opt/miniconda/envs/libranet/src/libranet_logging, inifile: setup.cfg
 plugins: xdist-1.22.2, tap-2.2, forked-0.2, flask-0.10.0, flake8-1.0.0, cov-2.5.1, celery-4.0.2
 collected 15 items

 ========== test session starts =====================
 tests/test_cli.py .
 tests/test_filters.py
 tests/test_logconfig.py
 tests/test_loglevel.py ..
 ========== 15 passed in 0.33 seconds ===============

Run tests with code-coverage

> pytest --cov=libranet_logging --cov-report html .

Changelog

1.4 (unreleased)

	Remove compatibility with PyYaml < 5.1.

	Remove click as dependency.

	Remove libranet-print-logging-tree-executable.

	Remove dependency on distutils by copying over
function distutils.utils.str2bool.

	Add .readthedocs.yaml.

	Modernize setup, switch to pyproject.toml and remove old-style setup.py and setup.cfg.

	Remove no longer needed MANIFEST.in.

	Remove etc/pip-requirements, replaced by poetry.lock.

	Move .pylintrc to pyproject.toml

	Update all dependencies.

	Add pyroma as dev-dependency.

1.3 (2023-01-24)

	No longer try to be smart about interactive mode or not.
You can set the active logging-handlers by setting the env-var LOG_HANDLERS`

	Remove disable_console as input-parameter to libranet_logging.initialize().

	Change default separator from ; to |. Use set via env-var LOG_HANDLERS.

1.2 (2021-06-06)

	Fix logo. [WVH]

	Add .gitlab-ci.yml [WVH]

1.1 (2020-02-13)

	Fix error ModuleNotFoundError: No module named 'libranet_logging.version'. [WVH]

1.0 (2020-02-12)

	Move __version__-attribute to __init__. [WVH]

	Package libranet_logging forked from WVH’s unreleased package. [WVH]

0.5 (2019-08-19)

	Add docstrings and type-hinting.

	Fix a series of issues reported by pylint.

	Change function-signature of libranet_logging.yaml.read_yml: change vars into variables
to avoid shadowing the buitlin vars()-function:

>>> config = read_yaml(path, vars=None)
>>> config = read_yaml(path, variables=None)

0.4 (2019-07-31)

	Add version.py with a __version__-attribute, rework version-management.

	In setup.py set minimum-requirements for cerberus >=1.3.1. [WVH]

0.3 (2019-05-28)

	In sphinx-docs, add link to coverage-report
on https://example.com/docs/libranet_logging-coverage [WVH]

	In Makefile add step`` copy-cov`` to copy coverage-report to apache-webdirectory. [WVH]

	In libranet_logging.yaml.read_yaml cdefault vars to empty dicts when not provided. [WVH]

	In libranet_logging.logconfig.logging_schema rename valueschema to valuesrules
to avoid DeprecationWarnings. [WVH]

0.2 (2019-03-28)

	Make libranet_logging.yaml.read_yaml compatible with PyYAML 5.1,
but keep backwards-compatibility with older versions. [WVH]
Cfr:

- https://github.com/yaml/pyyaml/blob/master/CHANGES
- https://github.com/yaml/pyyaml/pull/257
- https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation

0.1 (2019-03-28)

	Add support for simple string-formatting in the loggin.yml. [WVH]

	Use isort to manage the imports. Add isort-config to setup.cfg. [WVH]

	Introduce environment-variable PYTHON_CONSOLE_FORMATTER to select which
console-formatter to use. [WVH]

	Rename colored-console-formatter into console_color and add
console_bw-formatter for simpe black & white logging in the console. [WVH]

	Add flask_wtf-handler in default logging.yml. [WVH]

	If the log-directory does not yet exist, we now create it. [WVH]

	We should have a user-specific default location to avoid interference between users.
The log-directory will be first taken from th direct function-parameters, then
from the logging.yml if present. If not present, from the env-var
PYTHON_LOG_CONFIG, and in case of no env-var we default to $HOME/logs
instead of var/tmp/python. [WVH]

	Support setting the log-directory via the initialize-function. [WVH]

	Fix failing test test_initialize_without_logging_tree.
It was failing when the env-var PYTHON_ENABLE_LOGGING_TREE was not set. [WVH]

	Fix failing test of the click-command cli.print_logging_tree. [WVH]

	Add new testing-dependency pytest-click. [WVH]

	Convert cli.print_logging_tree to a click-command, accepting an optional path-argument.
If the environment-variable PYTHON_LOG_CONFIG is set, we use that value as the path-default. [WVH]

	Add click as a new dependency. [WVH]

	Add documentation about unittesting. [WVH]

	We now support arrays in environment-variables. Environment-variables
containing a ; are now converted to a list similar to the
default value if that env-variable was not set. [WVH]

	Fix filters.RegexFilter to use search() instead of match().
Cfr. https://docs.python.org/3/library/re.html#search-vs-match [WVH]

	Add passing unit-tests. [WVH]

	In initialize() allow Path-parameters as input instead of only string-paths. [WVH]

	Generally make the code robust in case of loading a logging.yml with schema-errors. [WVH]

	Add console-entrypoint libranet-logging-print-logging-tree
to initialize the logging and print the logging-tree to the standard output.
Add corresponding function in new libranet_logging.cli-module. [WVH]

	Add function-paramater use_print=False to logconfig.show_logging_tree
to enable printing to standard output instead of logging to the configured loggers. [WVH]

	If we call initialize() without providing a path of setting the environmant-variable PYTHON_LOG_CONFIG,
we now use the default logging.yml shipped with this libranet_logging-package. [WVH]

	Add logger libranet_logging to our default logging.yml. [WVH]

	Instantiate the correct logger using __name__ instead of logging to the root-logger. [WVH]

	Add recommonmark and update docs.conf.py to allow markdown in docs.
Cfr.https://recommonmark.readthedocs.io/en/latest/ [WVH]

	In setup.py and docs/pip-requirements add sphinx-related dependencies. [WVH]

	Simplify public api:

	Rename function loglevel.create_loglevel into loglevel.create.

	Rename function logconfig.initialize_logging into logconfig.initialize.

[WVH]

	Run Black on the code. Black is a code-formatter for Python.
Cfr. https://github.com/ambv/black [WVH]

	Add some basic Sphinx-based documentation. [WVH]

	Factor out creating new loglevels into its own loglevel-module. [WVH]

	Factor out logging-filters into its own filters-module. [WVH]

	Add third-party dependency colorlog. This is not a code-dependency
but rather a dependency of logging.yml. [WVH]

	Add third-party dependencies cerberus, logging_tree and PyYAML. [WVH]

	Move logging-related code from libdl.utils into its own libranet_logging-package. [WVH]

	Package created via cookiecutter templates/cookiecutter-libranet-python-package.
[Wouter Vanden Hove <wouter@wvhconsulting.org>]

Security Policy

Supported Versions

Use this section to tell people about which versions of your project are
currently being supported with security updates.

Version	Supported
——-	——————
0.x	:white_check_mark:
1.0.x	:white_check_mark:

Reporting a Vulnerability

This project follows a 90 day disclosure timeline.

To report a security issue, please an email security@libranet.eu with

	a description of the issue

	the steps you took to create the issue,

	affected versions

	and if known, mitigations for the issue

Our team will acknowledge receiving your email within 3 working days.

MIT License

Copyright (c) 2023 Libranet.eu [https://libranet.eu].

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Contributors

Special thanks for all the people who have helped on this project so far.

Append your name if you have contributed to this package. We use anti-chronological ordering (oldest on top).

	Wouter Vanden Hove <wouter@libranet.eu> [https://github.com/WouterVH]

How to contribute

When contributing to this repository, please first discuss the change you wish to make via issue, email,
or any other method with the owners of this repository before making a change.

Please note we have a code of conduct, please follow it in all your interactions with the project.

Development environment setup

Proceed to describe how to setup local development environment.
e.g:

To set up a development environment, please follow these steps:

	Clone the repo

git clone https://github.com/libranet/httpclient-logging

	Run make install

make install

Issues and feature requests

You’ve found a bug in the source code, a mistake in the documentation or maybe you’d like a new feature?
Take a look at GitHub Discussions [https://github.com/libranet/httpclient-logging/discussions] to see if it’s already being discussed.

You can help us by submitting an issue on GitHub [https://github.com/libranet/httpclient-logging/issues].
Before you create an issue, make sure to search the issue archive – your issue may have already been addressed.

Please try to create bug reports that are:

	Reproducible. Include steps to reproduce the problem.

	Specific. Include as much detail as possible: which version, what environment, etc.

	Unique. Do not duplicate existing opened issues.

	Scoped to a Single Bug. One bug per report.

Even better: Submit a pull request with a fix or new feature!

How to submit a Pull Request

	Search our repository for open or closed
Pull Requests [https://github.com/libranet/httpclient-logging/pulls]
that relate to your submission. You don’t want to duplicate effort.

	Fork the project

	Create your feature branch (git checkout -b feat/amazing_feature)

	Commit your changes (git commit -m 'feat: add amazing_feature')
httpclient-logging uses conventional commits [https://www.conventionalcommits.org], so please follow the specification in your commit messages.

	Push to the branch (git push origin feat/amazing_feature)

	Open a Pull Request [https://github.com/libranet/httpclient-logging/compare?expand=1]

Contributor Covenant Code of Conduct

Our Pledge

We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.

Our Standards

Examples of behavior that contributes to a positive environment for our
community include:

	Demonstrating empathy and kindness toward other people

	Being respectful of differing opinions, viewpoints, and experiences

	Giving and gracefully accepting constructive feedback

	Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience

	Focusing on what is best not just for us as individuals, but for the
overall community

Examples of unacceptable behavior include:

	The use of sexualized language or imagery, and sexual attention or
advances of any kind

	Trolling, insulting or derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or email
address, without their explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

Scope

This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
security@libranet.eu.
All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the
reporter of any incident.

Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:

1. Correction

Community Impact: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.

Consequence: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.

2. Warning

Community Impact: A violation through a single incident or series
of actions.

Consequence: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including
sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.

4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within
the community.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct
enforcement ladder [https://github.com/mozilla/diversity].

For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

libranet_logging

libranet_logging.__init__

Submodules

	libranet_logging.cli

	libranet_logging.filters

	libranet_logging.logconfig

	libranet_logging.loglevel

	libranet_logging.yaml

Package Contents

Functions

	print_loggers()

	Returns:

	print_tree()

	Returns:

	initialize([path, logdir, capture_warnings, silent, ...])

	Initialize logging configuration with a yaml-file.

	output_logging_tree([use_print])

	
	param use_print:

	

	create_loglevel([level_name, level_num])

	Create a custom loglevel.

Attributes

	__version__

	

	create_loglevel_trace

	

	
libranet_logging.__version__ = '1.4.dev0'

	

	
libranet_logging.print_loggers()

	Returns:

	Return type:

	None

	
libranet_logging.print_tree()

	Returns:

	Return type:

	None

	
libranet_logging.initialize(path='', logdir='', capture_warnings=True, silent=False, use_print=False, variables=None)

	Initialize logging configuration with a yaml-file.

	Parameters:

	
	path –

	logdir –

	capture_warnings –

	silent –

	use_print –

	variables –

Returns:

	
libranet_logging.output_logging_tree(use_print=False)

	
	Parameters:

	use_print –

Returns:

	
libranet_logging.create_loglevel(level_name='', level_num=0)

	Create a custom loglevel.

Defining your own levels is possible, but should not be necessary, as the existing levels
have been chosen on the basis of practical experience. However, if you are convinced that
you need custom levels, great care should be exercised when doing this, and it is possibly
a very bad idea to define custom levels if you are developing a library. That’s because if
multiple library authors all define their own custom levels, there is a chance that the
logging output from such multiple libraries used together will be difficult for the using
developer to control and/or interpret, because a given numeric value might mean different
things for different libraries.
Cfr. https://docs.python.org/3/howto/logging.html#custom-levels

	Default levels:
	0 NOTSET
10 DEBUG
20 INFO
30 WARNING
40 ERROR
50 CRITICAL

	Parameters:

	
	level_name – logger-name

	level_num – numeric level of the custom logger, positive integer

	Returns:

	None

	Side-effect:
	adds attribute to Logger-class

	
libranet_logging.create_loglevel_trace

	

libranet_logging.cli

libranet_logging.cli

Module Contents

Functions

	print_tree()

	Returns:

	print_loggers()

	Returns:

	
libranet_logging.cli.print_tree()

	Returns:

	Return type:

	None

	
libranet_logging.cli.print_loggers()

	Returns:

	Return type:

	None

libranet_logging.filters

libranet_logging.filters.

Module Contents

Classes

	SimpleStringFilter

	SimpleStringFilter is a logging-filter based in simple string occurence in the logmessage.

	RegexFilter

	RegexFilter is a logging-filter based in regular expressions.

	
class libranet_logging.filters.SimpleStringFilter(name='', params=None)

	Bases: logging.Filter

SimpleStringFilter is a logging-filter based in simple string occurence in the logmessage.

	
filter(record)

	Determine if the specified record is to be logged.

	Parameters:

	record –

	Return type:

	bool

Returns:

	
class libranet_logging.filters.RegexFilter(name='', params=None)

	Bases: logging.Filter

RegexFilter is a logging-filter based in regular expressions.

	
filter(record)

	Determine if the specified record is to be logged.

	Parameters:

	record –

	Return type:

	bool

Returns:

libranet_logging.logconfig

libranet_logging.logconfig.

Module Contents

Functions

	is_interactive_shell()

	Decide if this process is run in an interactive shell or not.

	get_sorted_lognames()

	Returns:

	remove_console(config[, disable_console])

	
	param config:

	

	ensure_dir(directory)

	
	param directory:

	

	convert_filenames(config[, logdir])

	"Convert all relative filenames in the handlers to absolute paths.

	remove_lower_level_handlers(config)

	Remove lower-level handlers from dedicated-level loggers.

	validate_logging(log_config, path)

	Validate the syntax of a logging.yml-file.

	strtobool(val)

	Convert a string representation of truth to true (1) or false (0).

	output_logging_tree([use_print])

	
	param use_print:

	

	get_default_logging_yml()

	Returns the path to the default logging configuration file.

	initialize([path, logdir, capture_warnings, silent, ...])

	Initialize logging configuration with a yaml-file.

Attributes

	cerberus

	

	log

	

	logging_schema

	

	
libranet_logging.logconfig.cerberus

	

	
libranet_logging.logconfig.log

	

	
libranet_logging.logconfig.logging_schema

	

	
exception libranet_logging.logconfig.CerberusValidationError

	Bases: Exception

CerberusValidationError-class.

	
libranet_logging.logconfig.is_interactive_shell()

	Decide if this process is run in an interactive shell or not.

If environment-variable $TERM is present,
we are running this code in a interactive shell,
else we are run from cron or called via nrpe as a nagios-check.

Returns: boolean

	
libranet_logging.logconfig.get_sorted_lognames()

	Returns:

	
libranet_logging.logconfig.remove_console(config, disable_console=False)

	
	Parameters:

	
	config –

	disable_console –

Returns:

	
libranet_logging.logconfig.ensure_dir(directory)

	
	Parameters:

	directory –

Returns:

	
libranet_logging.logconfig.convert_filenames(config, logdir='')

	“Convert all relative filenames in the handlers to absolute paths.

	Parameters:

	
	config –

	logdir –

Returns:

	
libranet_logging.logconfig.remove_lower_level_handlers(config)

	Remove lower-level handlers from dedicated-level loggers.

	We have dedicated file-handlers for each logging-level
	
	debug_file_handler

	info_file_handler

	warning_file_handler

	error_file_handler

If the root-level is set higher, we remove the lower-level handlers
This avoids creating logfiles that will always remain empty.

	
libranet_logging.logconfig.validate_logging(log_config, path)

	Validate the syntax of a logging.yml-file.

	
libranet_logging.logconfig.strtobool(val)

	Convert a string representation of truth to true (1) or false (0).

True values are ‘y’, ‘yes’, ‘t’, ‘true’, ‘on’, and ‘1’; false values
are ‘n’, ‘no’, ‘f’, ‘false’, ‘off’, and ‘0’. Raises ValueError if
‘val’ is anything else.

	
libranet_logging.logconfig.output_logging_tree(use_print=False)

	
	Parameters:

	use_print –

Returns:

	
libranet_logging.logconfig.get_default_logging_yml()

	Returns the path to the default logging configuration file.

	Returns:

	A Path object representing the path to the default logging configuration file.

	Return type:

	pathlib.Path

	
libranet_logging.logconfig.initialize(path='', logdir='', capture_warnings=True, silent=False, use_print=False, variables=None)

	Initialize logging configuration with a yaml-file.

	Parameters:

	
	path –

	logdir –

	capture_warnings –

	silent –

	use_print –

	variables –

Returns:

libranet_logging.loglevel

libranet_logging.loglevel.

Module Contents

Functions

	create_loglevel([level_name, level_num])

	Create a custom loglevel.

Attributes

	create_loglevel_trace

	

	
libranet_logging.loglevel.create_loglevel(level_name='', level_num=0)

	Create a custom loglevel.

Defining your own levels is possible, but should not be necessary, as the existing levels
have been chosen on the basis of practical experience. However, if you are convinced that
you need custom levels, great care should be exercised when doing this, and it is possibly
a very bad idea to define custom levels if you are developing a library. That’s because if
multiple library authors all define their own custom levels, there is a chance that the
logging output from such multiple libraries used together will be difficult for the using
developer to control and/or interpret, because a given numeric value might mean different
things for different libraries.
Cfr. https://docs.python.org/3/howto/logging.html#custom-levels

	Default levels:
	0 NOTSET
10 DEBUG
20 INFO
30 WARNING
40 ERROR
50 CRITICAL

	Parameters:

	
	level_name – logger-name

	level_num – numeric level of the custom logger, positive integer

	Returns:

	None

	Side-effect:
	adds attribute to Logger-class

	
libranet_logging.loglevel.create_loglevel_trace

	

libranet_logging.yaml

libranet_logging.yaml.

In pyyaml 5.1 some incompatibilies were introduced with regard to yaml.load
to make it more safe by default.

	please see:
	
	https://github.com/yaml/pyyaml/blob/master/CHANGES

	https://github.com/yaml/pyyaml/pull/257

	https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation

Module Contents

Functions

	constructor_env(loader, node)

	YAML-Constructor to load a value from a env-variable.

	add_constructor()

	

	read_yaml(path[, variables])

	Read the yaml-file.

	
libranet_logging.yaml.constructor_env(loader, node)

	YAML-Constructor to load a value from a env-variable.

	Usage in yml:
	> !env ENVVAR_NAME, DEFAULTVALUE_IF_ENVVAR_NOT_SET

	
libranet_logging.yaml.add_constructor()

	

	
libranet_logging.yaml.read_yaml(path, variables=None)

	Read the yaml-file.

Returns: dict

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 libranet_logging	

 	
 	
 libranet_logging.cli	

 	
 	
 libranet_logging.filters	

 	
 	
 libranet_logging.logconfig	

 	
 	
 libranet_logging.loglevel	

 	
 	
 libranet_logging.yaml	

Index

 _
 | A
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | V

_

 	
 	__version__ (in module libranet_logging)

A

 	
 	add_constructor() (in module libranet_logging.yaml)

C

 	
 	cerberus (in module libranet_logging.logconfig)

 	CerberusValidationError

 	constructor_env() (in module libranet_logging.yaml)

 	convert_filenames() (in module libranet_logging.logconfig)

 	
 	create_loglevel() (in module libranet_logging)

 	(in module libranet_logging.loglevel)

 	create_loglevel_trace (in module libranet_logging)

 	(in module libranet_logging.loglevel)

E

 	
 	ensure_dir() (in module libranet_logging.logconfig)

F

 	
 	filter() (libranet_logging.filters.RegexFilter method)

 	(libranet_logging.filters.SimpleStringFilter method)

G

 	
 	get_default_logging_yml() (in module libranet_logging.logconfig)

 	
 	get_sorted_lognames() (in module libranet_logging.logconfig)

I

 	
 	initialize() (in module libranet_logging)

 	(in module libranet_logging.logconfig)

 	
 	is_interactive_shell() (in module libranet_logging.logconfig)

L

 	
 	
 libranet_logging

 	module

 	
 libranet_logging.cli

 	module

 	
 libranet_logging.filters

 	module

 	
 libranet_logging.logconfig

 	module

 	
 	
 libranet_logging.loglevel

 	module

 	
 libranet_logging.yaml

 	module

 	log (in module libranet_logging.logconfig)

 	logging_schema (in module libranet_logging.logconfig)

M

 	
 	
 module

 	libranet_logging

 	libranet_logging.cli

 	libranet_logging.filters

 	libranet_logging.logconfig

 	libranet_logging.loglevel

 	libranet_logging.yaml

O

 	
 	output_logging_tree() (in module libranet_logging)

 	(in module libranet_logging.logconfig)

P

 	
 	print_loggers() (in module libranet_logging)

 	(in module libranet_logging.cli)

 	
 	print_tree() (in module libranet_logging)

 	(in module libranet_logging.cli)

R

 	
 	read_yaml() (in module libranet_logging.yaml)

 	RegexFilter (class in libranet_logging.filters)

 	
 	remove_console() (in module libranet_logging.logconfig)

 	remove_lower_level_handlers() (in module libranet_logging.logconfig)

S

 	
 	SimpleStringFilter (class in libranet_logging.filters)

 	
 	strtobool() (in module libranet_logging.logconfig)

V

 	
 	validate_logging() (in module libranet_logging.logconfig)

Changelog

All notable changes to this project will be documented in this file.

Unreleased (YYYY-MM-DD)

	Package created by [Wouter Vanden Hove wouter@libranet.eu]

libranet_logging

	Installation

	Why use logging?

	Goal of libranet-logging

	Features

	Usage
	In your deployment

	In your code

	Unittesting
	Introduction

	Re-usable test-fixtures

	Run tests

	Run tests with code-coverage

	Test Coverage [https://example.com/docs/libranet_logging-coverage]

	Changelog
	1.4 (unreleased)

	1.3 (2023-01-24)

	1.2 (2021-06-06)

	1.1 (2020-02-13)

	1.0 (2020-02-12)

	0.5 (2019-08-19)

	0.4 (2019-07-31)

	0.3 (2019-05-28)

	0.2 (2019-03-28)

	0.1 (2019-03-28)

	Contributors

	MIT License

 _static/favicon.png

nav.xhtml

 Table of Contents

 		
 libranet-logging

 		
 Installation

 		
 Why use logging?

 		
 Goal of libranet-logging

 		
 Features

 		
 Usage

 		
 In your deployment

 		
 In your code

 		
 Unittesting

 		
 Introduction

 		
 Re-usable test-fixtures

 		
 Run tests

 		
 Run tests with code-coverage

 		
 Changelog

 		
 1.4 (unreleased)

 		
 1.3 (2023-01-24)

 		
 1.2 (2021-06-06)

 		
 1.1 (2020-02-13)

 		
 1.0 (2020-02-12)

 		
 0.5 (2019-08-19)

 		
 0.4 (2019-07-31)

 		
 0.3 (2019-05-28)

 		
 0.2 (2019-03-28)

 		
 0.1 (2019-03-28)

 		
 Security Policy

 		
 Supported Versions

 		
 Reporting a Vulnerability

 		
 MIT License

 		
 Contributors

 		
 How to contribute

 		
 Development environment setup

 		
 Issues and feature requests

 		
 How to submit a Pull Request

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Enforcement Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Enforcement Guidelines

 		
 1. Correction

 		
 2. Warning

 		
 3. Temporary Ban

 		
 4. Permanent Ban

 		
 Attribution

 		
 libranet_logging

 		
 Submodules

 		
 libranet_logging.cli

 		
 libranet_logging.filters

 		
 libranet_logging.logconfig

 		
 libranet_logging.loglevel

 		
 libranet_logging.yaml

 		
 Package Contents

 		
 Functions

 		
 Attributes

_static/plus.png

_static/file.png

_static/minus.png

